

Medical > In Vivo > Other material

52

Quantification of capillary blood cell flow using reflectance confocal microscopy.

Cinotti E, Gergelé L, Perrot JL, Dominé A, Labeille B, Borelli P, Cambazard F., Skin Res Technol. 2014 Aug;20(3):373-8. doi: 10.1111/srt.12128.

ABSTRACT

BACKGROUND/PURPOSE: In vivo reflectance confocal microscopy (IVCM) is a new tool for skin microcirculation. However, the measure of quantitative blood cell flow (QBCF) has not been standardized. We studied the inter-investigator and the intra-capillary reproducibility of the manual measure of QBCF on IVCM videos and investigated if a software program might help measure QBCF and be sensitive to vascular occlusion tests. **METHODS:** The inter-investigator reproducibility of the manual QBCF was evaluated on 107 videos. The intra-capillary reproducibility of QBCF measured manually and by 2 semi-automatic procedures based on Image J software analysis was evaluated on 19 capillaries. One of the semi-automatic methods (peaks of luminous intensity) was also used to measure the QBCF during vascular occlusion tests. **RESULTS:** The manual measure did not show a good inter-investigator reproducibility (Pearson's coefficient <0.5). The 'peaks of luminous intensity' method was found to have a good intra-capillary reproducibility and to be sensitive to vascular occlusion. **CONCLUSION:** Differently from the manual count, the count of peaks of luminous intensity by Image J software seems to be promising to measure QBCF. The future is to create software allowing for real-time measure of the QBCF based on the peaks of luminous intensity inside the capillaries recorded by IVCM.