The ablative fractional coagulation zone influences skin fluorescence intensities of topically applied test molecules-An in vitro study with fluorescence microscopy and fluorescence confocal microscopy.

Banzhaf CA, Ortner VK, Philipsen PA, Haedersdal M.

ABSTRACT
BACKGROUND: Ablative fractional laser (AFL) increases uptake of topically applied skin agents. The coagulation zone (CZ) surrounding vertically ablated channels may influence uptake of drugs.
OBJECTIVES: To investigate impact of CZ thickness on skin fluorescence intensities (FI) of a hydrophilic molecule by means of fluorescence microscopy (FM) and fluorescence confocal microscopy (FCM). Second, to compare FI of hydrophilic and lipophilic test molecules by FCM.
STUDY DESIGN/METHODS AND MATERIALS: Microchannels with CZ thicknesses of 0, 20, and 80?µm were generated by microneedles or AFL (10,600?nm). Channels were 700?µm deep and number of channels kept constant per skin area. After 4 hours of incubation, FI induced by sodium fluorescein (NAF, hydrophilic, logarithmic partition-coefficient (logP)=-1.52, MW=376.26) were quantified in both CZ and surrounding skin by FM (0-1,500?µm) and FCM (0-90?µm). FI of NAF and carboxyfluorescein (CAF, lipophilic, logP=2.9, MW=376.32) were compared by FCM.
RESULTS: By FM, NAF-induced FI were higher in CZ than in surrounding skin (P<0.001). Highest NAF-FI were induced in skin pretreated with a thin CZ (CZ-20?µm), assessed by both FM and FCM and in particular, FI were higher than in skin pretreated with no CZ (CZ-0?µm) (FM P<0.041, FCM P<0.012). Skin FI remained constant to a depth of 500?µm, which corresponded to approximate depth of microchannels (CZ-0?µm, CZ-20?µm, CZ-80?µm: 0-500?µm P=0.107). In accordance with FM data, FCM showed higher FI within CZ than in surrounding skin, but gradually decreased to zero at a depth of 90?µm. NAF-FI were higher than CAF-FI (P<0.036), and highest CAF-FI were induced by CZ-0?µm and CZ-20?µm compared to CZ-80?µm (P<0.009).
KEYWORDS: carboxyfluorescein; dermatology; drug delivery; reflectance; skin imaging; sodium fluorescein PMID: 30584842 DOI: 10.1002/lsm.23034