ABSTRACT
In the context of an overall anti-glycation concept, SILAB has developed novel study models to study glycation in vitro and in vivo. These models are based from fibroblasts cultivated in vitro in a lattice of glycated collagen up to volunteer panellists, with high levels of cutaneous advanced glycation end products (AGEs). The study of fibroblasts glycated in vitro showed a disorganisation of the major proteins of the dermis, whether intra- or extracellular. In addition, a novel method for the semi-quantitative measurement of the state of dermal fibres in vivo revealed the deterioration of the dermal matrix in volunteer with glycated skin. These new models allowed SILAB to measure the effects of its new natural and eco-designed cosmetic active ingredient proposed to the global cosmetic market. This new cosmetic ingredient is rich in sulphated galactans, obtained from the alga Hypnea musciformis, and capable of combating the harmful effects of glycation.